

IMPLEMENTATION OF DEFLECTION BOWL MEASUREMENTS FOR STRUCTURAL EVALUATIONS AT NETWORK LEVEL OF APMS

Franco Pigozzi, Mauro Coni, Silvia Portas and Francesca Maltinti – University of Cagliari, Italy

DICAAR

- ▶ Introduction
- Research Objective and Scope
- ► Testing location: The Olbia «Costa Smeralda» Airport
- ▶ Tests conducted
- Data analysis
- Benchmarking application
- **▶** Conclusions

Introduction

RAPID AND EASY TECHNIQUES FOR

STRUCTURAL EVALUATION AT NETWORK LEVEL

OF APMS WITH LOW BUDGET REQUIREMENTS

FOR PAVEMENT EVALUATIONS

STRUCTURAL INVESTIGATIONS CAN BE CONDUCTED WITH THE F/HWD, THEN THE BACK-CALCULATION ALLOWS THE LAYER STIFFNESS KNOWLEDGE

DIRECT USE OF DEFLECTION VALUES

Network Level

- Programming
 - Planning
 - Budget

Project Level

- Design
- Construction
 - M&R

RATING STRUCTURAL CONDITIONS

Research objective and scope

INVESTIGATION OF:

- OVERALL STRUCTURAL CAPACITY
- SINGLE LAYER PERFORMANCE

NETWORK LEVEL APMS

DEFLECTION COMPARABILITY?

SELF-RATING CONDITIONS PROCEDURE

2014 FAA Worldwide Airport Technology Transfer Conference - August 5-7, 2014 - Galloway, New Jersey, USA

Heavy Falling Weight Deflectometer (HWD)

Standard method of non-destructive evaluation of airports pavements

Geophone	D1	D2	D3	D4	D5	D6	D7	D8	D9
Distance from center load (mm)	0	200	300	450	600	900	1200	1500	1800

Tests conducted

Data analysis

Layer investigation

- Surface layer < > E1
- Subbase <> E2
- Subgrade < > E3

Back-calculation

- Coring inspections for E2, E3 assumptions

SURFACE LAYER

SCI = D1 (0mm) - D3 (300mm)

E1= 629629 (SCI)-1,03

Data analysis

SUBBASE LAYER

 $Modified BDI^* = D3 (300mm) - D6 (900mm)$

(*) Donovan & Tutumluer

E2= 5663607 (Modified BDI)^{-1.73}

Data analysis

SUBGRADE LAYER

$$SI = D6 (900mm) - D8 (1500mm)$$

$$D5 (600mm)$$

$$E3 = 3.30 (SI)^{-3.03}$$

DATA COMPARISON?

 $Lr = (Load_{july})/(Load_{april})$

 $Dr = (Deflection i-geophone_{july})/(Deflection i-geophone_{april})$

Layer	Structural condition rating	E1 (MPa)
HMA with	Acceptable (Green)	> 2250 (MPa)
Bituminous Base	Warning (Amber)	2250 - 1250 (MPa)
	Severe (Red)	< 1250 (MPa)

79	141
5,20m 0m	
200 400 600 800 1000 1200 1400 1600 18	800 2000 22

Layer	Structural condition rating	SCI (drop weight 145kN)
HMA with	Acceptable (Green)	< 245(µm)
Bituminous Base	Warning (Amber)	245 - 425 (µm)
	Severe (Red)	> 425 (µm)

Granular subbase properties

Franco Pigozzi, Mauro Coni, Silvia Portas and Francesca Maltinti – University of Cagliari, Italy 2014 FAA Worldwide Airport Technology Transfer Conference – August 5-7, 2014 – Galloway, New Jersey, USA

Layer	Structural condition rating	E3 (MPa)
Subgrade	Acceptable (Green)	> 100 (MPa)
	Warning (Amber)	100- 50 (MPa)
	Severe (Red)	< 50 (MPa)

Layer	Structural condition rating	Subgrade Index (drop weight 145kN)
Subgrade	Acceptable (Green)	< 0.325
	Warning (Amber)	0.325 - 0.340(µm)
	Severe (Red)	> 0.340 (µm)

Franco Pigozzi, Mauro Coni, Silvia Portas and Francesca Maltinti – University of Cagliari, Italy 2014 FAA Worldwide Airport Technology Transfer Conference – August 5-7, 2014 – Galloway, New Jersey, USA

Conclusions

- ►The pavement condition rating has been conducted implementing 4 indexes:
 - D1 maximum deflection → OVERALL CONDITIONS
 - SCI → HMA
 - Modified BDI → SUBBASE
 - Subgrade Index → SUBGRADE
- ► The selection of benchmarking values for implementation on APMS network-level has been conducted directly linking deflections parameters with the layer moduli obtained from back-calculation
- ► Investigating both *Dr* and *Lr*, having experienced temperature and moisture variations, the normalization has been conducted assuming different relationship for the geophone inspected

Conclusions

- ► In this investigation higher stiffness of subgrade layer on summer season has been found possibly related to lower water table level, highlighting the need of a drainage system improvement
- ► For pavement management purposes uniform conditions throughout years about season and temperature are suggested
- ► The use of contour plots representation in conjunction with the benchmarking methodology allows the immediately visual identification of critical areas as well as helping to define homogeneous sections

Thank you for your attention!

